16930 LIGHTING CONTROL SYSTEM

PART 1 – GENERAL

1.1 SUMMARY

A. The work covered in this section is subject to all of the requirements in the General Conditions of the Specifications. Contractor shall coordinate all of the work in this section with all of the trades covered in other sections of the specification to provide a complete and operable system. All Labor, materials, appliances, tools, equipment, facilities, transportation and services necessary for and incidental to performing all operations in connection with furnishing, delivery and installation of the work of this Section.

1.2 DESCRIPTION OF WORK

A. Furnish and install a complete system for the control of lighting and other equipment as indicated on the plans, detailed in the manufacturer submittal and as further defined herein. Contractor is solely responsible to verify quantity, installation locations and wiring requirements for this project. Specific manufacturers catalog numbers, when listed in this section are for reference only. It is the responsibility of the contractor to verify with lighting control manufacturer all catalog information and specific product acceptability.

B. The system shall include but not be limited by the following list: Pre-wired, microprocessor controlled relay panels with electrically held, electronically latched relays panels controlled via a complete list of communication based accessories including digital switches, digital photocells, digital SmartBreaker panelboards, Digital Time Clock (DTC) and interface cards to dimming systems, building automation systems, thermostats, and other devices. The type of lighting control equipment and wiring specified in this section is covered by the description: Microprocessor Controlled Digital Relay Lighting Control system with RS 485 Bus communications. Requirements are indicated elsewhere in these specifications for work including, but not limited to, raceways and electrical boxes and fittings required for installation of control equipment and wiring. They are not the work of this section.

1.3 SUBMITTALS

A. Section 16010 – Shop Drawing Requirements.

B. Shop Drawings: Submit dimensioned drawings of lighting control system and accessories including, but not necessarily limited to, relay panels, switches, DTC, photocells and other interfaces. Shop drawings shall indicate exact location of each device or a RFI to confirm location. Plans are diagrammatical. EC to verify all lighting control material requirements from approved shop drawings. “Cut Sheet” submittal not acceptable.

C. Product Data: Submit for approval 6 copies of manufacturer's data on the specific lighting control system and components. Submittal shall be in both electronic and hard copy formats. To prevent departures from approved system operation, electronic file submitted shall be able to be directly downloaded to the specified system at manufacturer facility. Submit a complete bill of materials with part numbers, description and voltage specifications.

D. One Line Diagram: Submit a one-line diagram of the system configuration indicating the type, size and number of conductors between each component if it differs from that
1.4 QUALITY ASSURANCE

A. Products shall be manufactured by Lighting Control & Design, Los Angeles, CA, 800.345.4448 or approved equal. Such firms shall be regularly engaged in manufacture of lighting control equipment and ancillary equipment, of types and capacities required, whose products have been in satisfactory use in similar service for not less than 5 years. Any product other than those listed in this specification must be pre-approved a minimum of two weeks before bid time. No exceptions.

B. Control wiring shall be in accordance with the NEC requirements for Class 2 remote control systems, Article 725 and manufacturer specification.

C. A licensed electrician shall functionally test each system component after installation, verify proper operation and confirm that all relay panel and switch wiring conform to the wiring documentation. The Electrical Contractor (EC) is required to phone LC&D a minimum of 7 days before turnover for system checkout. At time of LC&D contact, all components to include phone line to modem must be installed, powered and operational.

D. Comply with NEC and all local and state codes as applicable to electrical wiring work.

E. Lighting control panels shall be UL 916 Listed. LCPs controlling emergency circuits shall be ETL listed to UL 924. Emergency source circuits controlled in normal operation by a relay panel shall fully comply with NEC 700-9(b). Electrical contractor is responsible for verifying compliance.

F. The lighting control system shall be listed, approved and comply as required with all national, state and local energy codes to include but not limited to California Title 24 and ASHRAE 90.1-2001.

1.5 MAINTENANCE MATERIALS

A. Division 1 - Execution Requirements: Spare parts and maintenance products.

B. Provide 10% spare relays per LCP, up to the maximum capacity of the LCP.

C. Provide CD version of manufacturers operating software to include graphical interface software.

D. Provide 2 extra sets of as-built and operating manuals.

1.6 SUBSTITUTIONS

A. Substitutions are permitted as voluntary alternates. Base bid must reflect the specified equipment.

B. A product must go through the following process before being approved as a substitution:
 1. A list of substitutions shall be provided to the owner as an attachment to the bid form. Submit along with bill of material, CD of proposed operating system, and a one line diagram of the system configuration proposed indicating the type, size and number of conductors between each component if it differs from that illustrated in the riser diagram in these specifications.
 2. The list will be reviewed by the owner and the engineer to determine whether the equipment meet the project needs. A $500 retainer will be submitted with the list of voluntary alternates to cover this meeting. If the owner and engineer agree that this meeting is not required, then the $500 will be returned to the contractor.
 3. The retainer is for evaluation of the alternate. The retainer is to be used to cover the time spent in this evaluation. The fee will be collected based on time spent in
1.7 SYSTEM DESCRIPTION

A. The lighting control system is a networked system that communicates via RS485. The system must be able to communicate with fully digital centralized relay panels, micro relay panels, smart breaker panels, digital switches, photocells, various interfaces and shall include all operational software. The intent of the specification is to integrate all lighting control into one system, except for areas controlled by a single motion sensor such as rooms with a single luminaire and emergency fixtures designed to operate 24/7. Distributed lighting control shall be provided using a networked micro relay panel. A centralized relay panel shall control corridors and site lighting. Lighting control system shall include all hardware and software. Software to be resident within the lighting control system. System shall provide local access to all programming functions at the master LCP and remote access to all programming functions via dial up modem and through any standard computer workstation running an industry standard internet browser. Lighting control system shall have server built into the master LCP that “serves” HTML pages to any authorize workstation. Desktop computers are not part of this section and will be provided by others. Non-networked, non-digital, non-server capable systems not acceptable.

B. System software shall provide real time status of each relay, each zone and each group.

C. Lighting control system shall be able to be monitored by and take commands from a remote PC. At any time, should the remote PC go off-line all system programming uploaded to the lighting control system shall continue to operate as intended. Systems requiring an online PC or server for normal operation are not acceptable.

D. All devices shall be pre-addressed at the factory. Field addressing is not acceptable.

E. All programs, schedules, time of day, etc, shall be held in non-volatile memory for a minimum of 10 years at power failure. At restoration of power, lighting control system shall implement programs required by current time and date.

F. System shall be capable of flashing lights Off/On any relay or any zone prior to the lights being turned Off. The warning interval time between the flash and the final lights off signal shall be definable for each zone. Occupant shall be able to override any scheduled Off sweep using local wall switches within the occupied space. Occupant override time shall be locally and remotely programmable and not exceed 2-hours.

G. The system shall be capable of implementing On commands, Off commands, Raise (dimming) commands, Lower (dimming) commands for any relay, group or zone by means of digital wall switches, specification grade line voltage type wall switches, photocell, web based software or other devices connected to programmable inputs in a lighting control panel.

H. The lighting control system shall provide the ability to control each relay and each relay group per this specifications requirement. All programming and scheduling shall be able to be done locally at the master LCP and remotely via dial up modem and via the
Internet. Remote connection to the lighting control system shall provide real time control and real time feedback.

I. System may consist of centralized relay panels, micro relay panels, smart breaker panels, digital switches, photocells and various digital interfaces. Verify exact components specified. Micro relay panels, smart breaker panels, centralized relay panels and digital switches shall communicate as one network via RS485. Micro relay panels, mounted in each local area, per plans shall control all lighting fixtures in that space, provide power to occupancy sensors and take input from daylight sensor and occupancy sensors. Micro relay panels shall be capable of taking inputs from standard, line voltage type switches and outputting up to 4 independent 0v to 10v dimming signals. All micro relay panels and all devices connected to micro relay panels lighting control, switches, photocells and occupancy sensors shall be wired per lighting control manufacturers instructions.

PART 2 -PRODUCTS

2.1 MATERIAL AND COMPONENTS

A. Relay Panels:
 1. NEMA rated enclosure with screw cover or hinged door. Rain tight or oil tight and other NEMA rated versions available.
 2. 16 AWG steel barrier shall separate the high voltage and low voltage compartments of the panel and separate 120v and 277v.
 3. LCP input power shall be capable of accepting 120v or 277v without rewiring
 4. Control electronics in the low voltage section shall be capable of driving 2 to 48 relays, control any individual or group of relays, provide individual relay overrides, provide a master override for each panel, store all programming in non-volatile memory, after power is restored return system to current state, provide programmable blink warn timers for each relay and every zone, and be able to control Normally Open (NO) or Normally Closed (NC) relays.
 5. Lighting control system shall be digital and consist of a Master LCP, Slave LCPs, Micro LCPs with up to 4 individual relays, digital switches, digital interface cards and if required, SmartBreaker panelboards. All system components shall connect and be controlled via a single Category 5, 4 twisted pair cable with RJ45 connectors, providing real time two-way communication with each system component. Analog systems are not acceptable.
 6. The lighting control system is a networked system that communicates via RS485 and includes centralized relay panels, micro relay panels, digital switches, photocells, various interfaces and operational software. The intent of the specification is to integrate all lighting control into one system. Lighting control system shall include all hardware and software. Software to be resident within the lighting control system. System shall provide local access to all programming functions at the DTC and remote access to all programming functions via dial up modem and through any standard computer workstation running an industry standard internet browser. Lighting control system shall have server built into the master LCP that “serves” HTML pages to any authorized workstation. Desktop computers are not part of this section and will be provided by others. Non-networked, non-digital system not acceptable.

B. Micro Relay Panels
 1. Micro relay panels shall have up to 4-20a lighting relays and shall control all lighting in the designated area indicated on the plans and be networked to centralized
relay panels, micro relay panels, smart breaker panels, digital switches, photocells, various interfaces. Each micro relay panel shall provide minimum 150mA at 24vdc for powering occupancy sensors. Micro relay panels that require a separate occupancy sensor power pack are not acceptable.

2. Micro relay panel shall provide 4-programmable photocell inputs, 4-programmable occupancy sensor inputs and matrixed contact closure inputs. This requirement is to insure integration of entire lighting system into one networked, lighting control system.

3. Micro relay panels shall be capable of outputting 4 independent 0v to 10v dimming signals, one independent dimming signal at each or 4 relays. In order to maximize daylight harvesting and minimize disruption to occupants, each dimming output shall provide adjustment for baseline, start point, mid point, end point, trim, fade up rate, fade down rate, time delay and enable/disable masking. All photocell setting must be remotely accessible. Systems providing On, Off with Time Delay only, and system that do not provide remote access are not acceptable.

C. Standard Output relays
1. Electrically held, electronically latched SPST relay.
2. Relays shall be individually replaceable. Relay terminal blocks shall be capable of accepting two (2) #10AWG wires on both the line and the load side. Systems that do not allow for individual relay replacement or additions are not acceptable.
3. Rated at 20 Amp, 277VAC Ballast, Tungsten, HID, 1 HP at 120 Vac, 2 HP at 240 Vac.
4. Relays to be rated for 250,000 operations minimum at a full 20a lighting load, use Zero Cross circuitry and be Normally Closed (NCZC). All incandescent circuits shall be energized by use of a Normally Closed SoftStart™ (NCSS) relay rated at 100,000 operations at full 20a load. No exceptions.
5. Optional relay types available shall include: Normally Open (NO) relay rated for 100,000 operations, a 600v 2-pole NO and NC and a Single Pole, Double Throw (SPDT) relay.

D. Low Voltage Switches
1. All switches shall be digital and communicate via RS 485. Contact closure style switches, except as specified for connection to the micro relay panel matrixed contact closure inputs, shall not be acceptable. The programming for a digital switch will reside in the switch itself, via double EPROM memory. Any digital switch button function shall be able to be changed locally (at the DTC or a PC) or remotely, via modem, Internet or Ethernet.
2. Digital low voltage switch shall be a device that sits on the lighting control system bus. Digital switch shall connect to the system bus using the same cable and connection method required for relay panels. System shall provide capability to locally and remotely program each individual switch button, monitor and change function of each button locally and remotely. Each button shall be capable of being programmed for On only, Off only, On/Off (toggle), Raise (Dim up) and Lower (Dim down). Switches requiring low voltage control wires to be moved from one input terminal to another to accomplish these functions are not acceptable.
3. Keyed switches shall programmable and connect to the lighting controls system bus.
4. Digital switches for high abuse areas (common areas, gymnasiums, etc.) shall be vandal resistant, contain no moving parts, and be touch sensitive and available
with up to three buttons in a single gang. Multi gang versions shall also be available. Touch pads shall be Stainless Steel and capable of handling both high abuse and wash down locations. High abuse switches shall connect to the lighting control system digital bus. Each high abuse switch touch button shall be able to be control any relay or any group in any panel or panels that is part of the lighting control system. Each touch button shall be able to be programmed for On, Off, Toggle or Maintain operation. All programming shall be done locally or remotely via dial up modem or web interface as described in other paragraphs of this section. High abuse switches shall be able to be enabled or disabled digitally. Each touch pad is to be identified as to function by an engraved label. Switches must be capable of handling electrostatic discharges of at least 30,000 volts (1cmspark) without any interruption or failure in operation.

E. DTC - Digital Electronic Time Clock
1. A Digital Time Clock (DTC) shall control and program the entire lighting control system and supply all time functions and accept interface inputs.
2. DTC shall be capable of up to 32 schedules. Each schedule shall consist of one set of On and Off times per day for each day of the week and for each of two holiday lists. The schedules shall apply to any individual relay or group of relays.
3. The DTC shall be capable of controlling up to 126 digital devices on a single bus and capable of interfacing digitally with other individual busses using manufacturer supplied interface cards.
4. The DTC shall accept control locally using built in button prompts and use of a 8 line 21-letter display or from a computer or modem via an on-board RS 232 port. All commands shall be in plain English. Help pages shall display on the DTC screen.
5. The DTC shall be run from non-volatile memory so that all system programming and real time clock functions are maintained for a minimum of 15 years with loss of power.
6. Pre-installed Unity™ lighting control software shall provide via local or remote PC a visual representation of each device on the bus, show real time status and the ability to change the status of any individual device, relay or zone. System shall be capable of running optional Unity GX lighting control software, which shall provide for directly importing vector based graphics. No exceptions.
7. Pre-Installed modem that allows for remote programming from any location using a PC. Modem to include all necessary software for local or remote control.
8. DTC shall provide system wide timed overrides. Any relay, group or zone that is overridden On, before or after hours, shall automatically be swept Off by the DTC a maximum of 2 hours later.

F. PHOTOCELL: Photocells to be mounted in location indicated on the plans. Photocells used for exterior lights shall provide multiple trips point from 1 roof mounted unit. All trips points shall be able to be changed remotely via Internet or dial up modem. Photocells requiring manual trip point adjustment are not acceptable. Photocell used for interior lighting control shall have multiple settings such as start-point, mid-point, off-point, fade-up, fade-down, etc. All settings shall be remotely accessible and adjustable. Systems providing local adjustment only are not acceptable. Photocells to be certified to comply with the current energy code covering this project at time of submittal of plans for building permit.

G. Interfaces: For future expansion capability, system to have available all of the following interfaces. Verify and install only those interfaces indicated on the plans.
1. A dry contact input interface card that provides 14 programmable dry contact closure inputs. Use shielded cable to connect input devices to interface card.
2. Interface card providing digital communication from one system bus to another system bus, allowing up to 12,000 devices to communicate.
University of California, Santa Barbara

1. An interface card that allows the DTC to control up to 32 digital XCI brand thermostats. Programming of thermostats to be done locally (at the DTC or a PC) or remotely, via modem, Internet or Ethernet.

2. A voice prompted telephone override interface module. Interface module shall accept up to 3 phone lines and allow up to 3 simultaneous phone calls. Voice prompted menu and up to 999 unique pass codes shall be standard with each interface module.

3. Software pre-installed to run Unity GX Graphical Interface Software. Unity GX software shall provide a visual representation of a specific area or the total area of the project. GX full graphic pages shall be designed to the owner's specifications. Owner to provide all necessary files and criteria. Provide ___ GX pages.

4. Direct digital interface to SmartBreaker panelboards. Relay panel and SmartBreaker panelboard circuits shall appear on the system software as similar, yet distinct, items and maintain all functions and features of the system software.

5. Direct digital interface to DMX 512 based systems. DMX interface shall provide 14 global commands, each of which can be modified locally or remotely using lighting controls manufacturer supplied software. DMX interface shall be integral to the system bus and shall connect and be controlled via a single Category 5, 4 twisted pair cable, providing real time response from the lighting control system to DMX commands.

6. Direct digital interface to building automation systems using DDC protocols such as BACnet and Metasys (N2) that accept on/off commands, time schedules and report status of all relays in all panels in real time. Interface cards shall "self populate" each individual relay and each group to the BAS.

PART 3 - EXECUTION

3.1 EQUIPMENT INSTALLATION

A. Mount relay control cabinets adjacent to respective lighting panelboard. Cabinet shall be surface or flush mount, per plans. Wiring between relay control cabinet and panelboards to be per local codes and acceptable industry standards. Under no circumstances will any extra be authorized for payment to the EC or GC due to the EC's lack of knowledge or understanding of any and all prevailing codes or specified manufacturer's installation requirements. Neatly lace and rack wiring in cabinets. During construction process, protect all interior components of each relay panel and each digital switch from dust and debris. Any damage done to electronic components due to non-protection shall be the sole responsibility of the installing contractor.

B. Switches: Provide outlet boxes, single or multi-gang, as shown on the plans for the low voltage digital switches. Mount switches as per plans. Supply faceplates per plans and specifications. EC is specifically responsible to supply and install the required low voltage cable, Category 5, 4 twisted pair, with RJ45 connectors and snagless boots (commonly referred to as Cat 5 patch cable) between all switches and panels. Field-test all Cat 5 patch cable with a recognized cable tester. All low voltage wire to be run in conduit, per local codes.

C. Wiring

1. Do not mix low voltage and high voltage conductors in the same conduit. No exceptions.
2. Ensure low voltage conduits or control wires do not run parallel to current carrying conduits.
3. Place manufacturer supplied “terminators” at each end of the system bus per manufacturers instructions.
4. Neatly lace and rack wiring in cabinets.
5. Plug in Category 5 patch cable that has been field-tested with a recognized cable tester, at the indicated RJ45 connector provided at each lighting control device, per manufacturers instructions.
6. Use Category 5 patch cable for all system low voltage connections. Additional conductors may be required to compensate for voltage drop with specific system designs. Contact LC&D or refer to the GR2400 manual for further information. Use shielded cable for dry contact inputs to lighting control system.
7. Do not exceed 4000ft-wire length for the system bus.
8. All items on the bus shall be connected in sequence (daisy chained). Star and spur topologies are not acceptable.
9. The specified lighting control system shall be installed by the electrical contractor who shall make all necessary wiring connections to external devices and equipment, to include photocell. EC to wire per manufacturer instructions.

3.2 INSTALLATION AND SET-UP

A. Verify that conduit for line voltage wires enters panel in line voltage areas and conduit for low-voltage control wires enters panel on low-voltage areas. Refer to manufacturer’s plans and approved shop drawings for location of line and low-voltage areas. It is the responsibility of the contractor to verify with lighting control manufacturer all catalog information and specific product acceptability.

B. For approved line voltage type micro relay panel switches connected to matrixed inputs of the micro relay panel, furnish #18 AWG solid conductors. For all other digital switches provide wiring required by system manufacturer.

C. For classroom digital switches provide wiring required by system manufacturer

D. Contractor to test all low voltage cable for integrity and proper operation prior to turn over. Verify with system manufacturer all wiring and testing requirements.

E. Before Substantial Completion, arrange and provide a one-day Owner instruction period to designated Owner personnel. Set-up, commissioning of the lighting control system, and Owner instruction includes:
 1. Confirmation of entire system operation and communication to each device.
 2. Confirmation of operation of individual relays, switches, occupancy sensors and daylight sensors
 3. Confirmation of system Programming, photocell settings, override settings, etc.
 4. Provide training to cover installation, maintenance, troubleshooting, programming, and repair and operation of the lighting control system.

F. Panels shall be located so that they are readily accessible and not exposed to physical damage.

G. Panel locations shall be furnished with sufficient working space around panels to comply with the National Electric Electrical Code.

H. Panels shall be securely fastened to the mounting surface by at least 4 points.

I. Unused openings in the cabinet shall be effectively closed.

J. Cabinets shall be grounded as specified in the National Electric Code.
K. Lugs shall be suitable and listed for installation with the conductor being connected.

L. Conductor lengths shall be maintained to a minimum within the wiring gutter space. Conductors shall be long enough to reach the terminal location in a manner that avoids strain on the connecting lugs.

M. Maintain the required bending radius of conductors inside cabinets.

N. Clean cabinets of foreign material such as cement, plaster and paint.

O. Distribute and arrange conductors neatly in the wiring gutters.

P. Follow the manufacturer's torque values to tighten lugs.

Q. Before energizing the panelboard, the following steps shall be taken:
 1. Retighten connections to the manufacturer's torque specifications. Verify that required connections have been furnished.
 2. Remove shipping blocks from component devices and the panel interior.
 3. Remove debris from panelboard interior.

R. Follow manufacturers' instructions for installation and all low voltage wiring.

S. Service and Operation Manuals:
 1. Submit operation and service manuals. Complete manuals shall be bound in flexible binders and data shall be typewritten or drafted.
 2. Manuals shall include instructions necessary for proper operation and servicing of system and shall include complete wiring circuit diagrams of system, wiring destination schedules for circuits and replacement part numbers. Manuals shall include as-built cable Project site plot plans and floor plans indicating cables, both underground and in each building with conduit, and as-built coding used on cables. Programming forms of systems shall be submitted with complete information.

T. Comply with energy code lighting control system “Acceptance Requirements”. Acceptance tests are used to verify that lighting controls were installed and calibrated correctly. These tests may require that a responsible party certify that controls are installed and calibrated properly. This is the installing contractors responsibility. Verify requirements with building authority.

3.3 DOCUMENTATION

A. Each relay shall have an identification label indicating the originating branch circuit number and panelboard name as indicated on the drawings. Each line side branch circuit conductor shall have an identification tag indicating the branch circuit number.

B. Provide a point-to-point wiring diagram for the entire lighting control system. Diagram must indicate exact mounting location of each system device. This accurate "as built" shall indicate the loads controlled by each relay and the identification number for that relay, placement of switches and location of photocell. Original to be given to owner, copies placed inside the door of each LCP.

3.4 SERVICE AND SUPPORT
A. Start Up: EC shall contact LC&D at least 7 days before turnover of project. LC&D will remotely dial into the lighting control system, run diagnostics and confirm system programming. EC shall be available at the time of dial in to perform any corrections required by LC&D. EC is responsible for coordinating with GC and the owner the installation of a dedicated telephone line or a shared phone line with A/B switch. Phone jack to be mounted within 12” of Master LCP. Label jack with phone number. EC to connect phone line from jack to Master LCP.

B. Telephone factory support shall be available at no additional cost to the EC or Owner both during and after the warranty period. Factory to pre-program the lighting control system per plans and approved submittal, to the extent data is available. The specified manufacturer, at no added cost, shall provide additional remote programming via modem as required by the EC or Owner for the operation life of the system. Upon request manufacturer to provide remote dial up software at no added cost to system owner. No exceptions.

C. Provide a factory technician for on-site training of the owners’ representatives and maintenance personnel. Coordinate timing with General Contractor. Provide ___ days of factory on-site training.

3.5 CLEANING

A. Division 1 - Execution Requirements: Final cleaning.

B. Clean photocell lens as recommended by manufacturer.

C. Clean all switch faceplates.

END OF SECTION